
 1

Java OGSI Hosting Environment Design – A Portable
Grid Service Container Framework

Thomas Sandholm, Steve Tuecke, Jarek Gawor, Rob Seed

sandholm@mcs.anl.gov, tuecke@mcs.anl.gov, gawor@mcs.anl.gov, seed@mcs.anl.gov
Argonne National Laboratory, IL

Tom Maguire, John Rofrano, Scott Sylvester, Mike Williams

tmaguire@us.ibm.com, rofrano@us.ibm.com, sylvests@us.ibm.com, mdw@us.ibm.com
IBM Poughkeepsie, NY

Abstract
The Open Grid Service Infrastructure (OGSI) specification defines a set of WSDL
interfaces to be implemented by various hosting environments. In this document we
define one such hosting environment written in Java. We focus on defining the server-
side programming model in order to allow Grid services written in one environment to be
easily deployed in others. In addition to facilitating service implementation portability,
we also define a container framework that is responsible for implementing the low-level
infrastructure of OGSI, so that service providers can focus on the application logic. A key
design point of the framework is its flexibility to allow for custom dispatchers to be
written for a wide range of back-end hosting environments, such as EJB containers,
Servlet containers, and CORBA servers. We define a set of interfaces and classes that
must be supported to comply with the container framework, and we provide two use
cases of applications of this framework; a lightweight Java implementation, and a more
enterprise-oriented EJB Entity Bean implementation of a Grid service.

mailto:sandholm@mcs.anl.gov
mailto:tuecke@mcs.anl.gov
mailto:gawor@mcs.anl.gov
mailto:seed@mcs.anl.gov
mailto:tmaguire@us.ibm.com
mailto:rofrano@us.ibm.com
mailto:sylvests@us.ibm.com
mailto:mdw@us.ibm.com

 2

Contents

1 Introduction ... 3
2 Related Specifications ... 3
3 Scope ... 3
4 Goal ... 4
5 Grid Service Port Types as Java Interfaces ... 4
6 Implementing Port Type Interfaces... 4
7 Registering Service Instances.. 6
8 External Sate Management.. 6
9 OGSI Container Interfaces and Classes .. 6

9.1 ServiceSkeleton... 6
9.2 PersistentServiceSkeleton ... 7
9.3 Delegation Skeletons... 7
9.4 FactoryServiceSkeleton... 8
9.5 ServiceActivator.. 8
9.6 ServiceProperties... 8
9.7 ContainerRegistry.. 9
9.8 ContainerRegistryListener .. 9
9.9 ServiceDataContainer.. 9
9.10 ServiceDataListener .. 10

10 Use Case: Light-weight Java Grid service Implementation.................................. 10
10.1 Java Subclass Implementation of Counter Grid service.................................... 10

10.1.1 Tool Generated Code .. 11
10.1.2 CounterFactoryImpl.java Source Code ... 11
10.1.3 CounterImpl.java Source Code ... 12

10.2 Java Delegation Implementation of Counter Grid service 12
10.2.1 Tool Generated Code .. 12
10.2.2 CounterFactoryImpl.java Source Code ... 13
10.2.3 CounterSkeleton.java Source Code... 13

11 Use Case: Custom EJB Dispatcher ... 14
11.1 Grid Service as an EntityBean .. 14

11.1.1 Tool Generated Code .. 16
11.1.2 CounterFactoryEjbImpl.java Source Code ... 16
11.1.3 CounterEjbSkeleton.java Source Code ... 18

12 References ... 19
Appendix A: Open Issues.. 20

 3

1 Introduction
The purpose of this document is twofold; 1) to share the experience gained from
developing a hosting environment for Open Grid Service Infrastructure (OGSI) based
services in Java[1]; and 2) to provide a set of interfaces that can be used to define the
interaction between a Grid service implementation, and its container implementing the
OGSI required behavior [2][3]. We hope that this effort will lead to an exchange of ideas
among different OGSI implementations, such as [1], and [4], in order to achieve Grid
service implementation portability in Java. Hence, we focus on the service-provider
programming model, and the responsibilities of an OGSI container implementation. The
OGSI container could be seen as a request dispatcher between the marshalling engine and
the service implementations. The service implementations could be either OGSI
container provided implementations of interfaces defined in the Grid Service
specification [3], or implementations of service provider defined interfaces. Since the
OGSI container is envisaged to integrate a wide range of heterogeneous service
implementations, it was designed to support customization of the request flow. First we
describe the relationship to other specifications, and in what areas this document extends
theses specifications. Then we discuss the proposed server-side programming model, and
present the OGSI container interfaces and classes in some more detail. Finally, we
provide two use cases of applications of the framework. The first use case exemplifies
how to develop a Grid service in a lightweight Java environment, whereas the second use
case shows an enterprise Java implementation of a Grid service using the framework.

2 Related Specifications
Neither the WSDL [5] nor the SOAP [6] specification defines how to process requests on
the server-side. This was left out in order to allow for implementations in many different
hosting environments using various programming models to be utilized. Since both of
these specifications are widely applied in today’s Web services implementations and
specifications, they will however indirectly have an impact on the server-side
programming model defined here. JAX-RPC [7] defines a server-side programming
model in a Servlet container [8]. It is based on a stateless object-pooling based lifecycle
model, which does not map very well onto the soft state model of a Grid service. JAX-
RPC, however, defines XML Schema [9] and WSDL to Java mappings, which we adopt
in our framework. The Web Services for J2EE specification [10] extends the JAX-RPC
server side-programming model to facilitate Web service implementation hosting in EJB
[11] containers as stateless Session Beans. From a service provider’s point of view it
therefore does not provide any new interfaces or APIs apart from those already defined in
the EJB specification. When integrating EJBs into our framework we take a very similar
approach. The main difference in our approach is that we allow stateful Session Beans, as
well as Entity Beans to be exposed as Grid services.

3 Scope
We are not defining the client-side programming model in this document, although it is
equally important to assure portability among OGSI clients. However, JAX-RPC already
defines a rich client-side programming model that can be used to communicate with Grid

 4

services as well. In the future, though, we expect there to be extensions to JAX-RPC in
order to make it easier for clients to use OGSI compliant Grid services. We want Grid
services to be deployed in a wide range of operating environments, and hence do not
define or mandate any deployment, packaging, or configuration in this document. The
implementations of an OGSI hosting environment are expected to leverage the features of
their respective target environment (e.g the J2EE Servlet or EJB models) in this area.
Further, the security model is deferred to other documents. The notification model
(JAXM [12], JMS [13], Message Driven Beans [11]) will also be dealt with elsewhere.

4 Goal
In the currently available set of specifications there is a gap in terms of expected behavior
between receiving a Web service request over for instance SOAP, and dispatching it into
a stateful service instance in a scalable manner. Our hope is to came up with a portable
dispatching framework that can be used both to write reusable Java Grid services, as well
as plugging in dispatchers to other component models hosting for instance EJB, or
CORBA objects [14]. The dispatcher framework will furthermore implement the OGSI
behavior defined in [3] and allowing it to be fully transparent to the service provider’s
implementation. In some cases, the service implementation or the custom dispatchers
may, however, want to explicitly interact with their container, for instance when
managing Service Data Elements (SDEs).

Note that even though JAX-RPC defines mappings between WSDL, and XML Schema
constructs; and Java interfaces, and types, our dispatcher framework does not make any
assumptions about how the XML types are deserialized into Java types; this is up to the
serialization (JAX-RPC) engine implementation being used.

This framework is intended to be compatible both with Java 2 Standard Edition (J2SE)
[15] as well as Java 2 Enterprise Edition (J2EE) [13]. Future versions of this document
may also address Java 2 Micro Edition (J2ME) [16].

5 Grid Service Port Types as Java Interfaces
The most fundamental prerequisite for portability among Grid service implementations is
that they all implement the same core interfaces. By core interfaces we refer to the
WSDL interfaces defined in the Grid service specification [2]. We are therefore taking
the approach of leveraging the WSDL to Java mappings defined in JAX-RPC. JAX-RPC
refers to these interfaces as Service Endpoint Interfaces. Grid services exposing any of
the Port Types defined in [3] must implement their respective Service Endpoint Interfaces
to be compliant with our framework.

6 Implementing Port Type Interfaces
Our design goal has been to allow implementations of the core OGSI interfaces to be
provided on behalf of service implementers. Implementations of this design could hence
be seen as hosting environments for Grid services. Further, the framework should allow
service providers to easily add in implementations of new Port Types through
configuration or tool driven code generation. The overall design of the basic components

 5

of the OGSI container architecture is depicted in Figure 1. The ServiceSkeleton
class is the base class for all Grid services and can hence be compared to a CORBA or
Java Object. As the base for all Grid services, this class naturally implements the
GridServicePortType interface. It also contains a ServiceDataContainer
allowing instance state and meta data to be published and queried. A
FactoryServiceSkeleton gives service implementers an easy way to implement
OGSI compliant factories. All optional core OGSI Port Types are provided as
DelegationSkeletons meaning that they can be contained by and delegated to by a
ServiceSkeleton instance.

+preDestroy()

ServiceSkeleton

+createServiceObject()

FactoryServiceSkeleton FactoryDelegationSkeleton

ServiceDataElement

«interface»
ServiceProperties

«interface»
GridServicePortType

PersistentServiceSkeleton

«interface»
FactoryPortType

«interface»
ServiceDataContainer

«interface»
ContainerRegistry

«interface»
ServiceDataListener

«interface»
ContainerRegistryListener

«interface»
ServiceActivator

Figure 1: UML Class Diagram of OGSI Container Architecture

So, implementing a service using this container framework typically involves providing a
service implementation that inherits from the ServiceSkeleton class and delegates
to any number of optional, either core or user defined Port Type implementations.
Optionally the service implementer may want to provide a Grid service factory by
extending the FactoryServiceSkeleton class in order to allow dynamic creation
of stateful ServiceSkeleton instances for its service. If no factory exists for a
service it is said to be a persistent service, and must then be made available by the
container during initialization, or by using a lazy-loading scheme. Persistent services

 6

should extend the PersistentServiceSkeleton class, which is an extension of
ServiceSkeleton.

7 Registering Service Instances
In order to allow the container to look up contained services when requests are to be
dispatched to them, they have to be registered with the container. The
ContainerRegistry maps an incoming WSDL service endpoint to the service
instance using the service path part of the endpoint. Thus, when registering a service, the
path has to be conveyed to the container along with a ServiceSkeleton or
ServiceActivator instance. By registering a ServiceActivator instance,
ServiceSkeletons can be loaded into memory first when being used. In order to
passivate stale instances to optimize memory usage, a JAX-RPC Handler can be used that
for instance passivates instances on a Least Recently Used (LRU) basis. Either a
ServiceSkeleton or a ServiceActivator has to be registered for a service
endpoint in order for the container to dispatch the request successfully. If a
ServiceSkeleton instance is found in the registry it will pass the incoming request
directly to the instance. If however a ServiceActivator instance is encountered, the
activator is first given a chance to activate the instance before the requested operation is
invoked. The activation hooks combined with the factory pattern of OGSI allow you to
write custom dispatchers delegating to remote hosting environments with their own
lifecycle management.

8 External Sate Management
A Grid service exposes its remotely introspectable state trough Service Data Elements
(SDEs). The Grid service specification defines what SDEs the core PortTypes must
expose, but service implementers should also be able to add their own information to the
set of SDEs contained by a ServiceSkeleton. Since this SDE container should be
seen as a logical set of XML instances complying to a well defined XML Schema model,
we want to allow many different implementations of this container, some of which may
be provided by the OGSI container and dispatcher framework provider transparently to
the application. But we also want to allow custom SDE containers to be written that are
hosted outside of the OGSI. This can be achieved by providing an implementatin of the
ServiceDataContainer interface, and then associating it with a
ServiceSkeleton instance.

9 OGSI Container Interfaces and Classes
In this section we describe a set of Java interfaces and classes that define the interaction
between an implementation of the OGSI container, and the service implementations and
custom dispatchers.

9.1 ServiceSkeleton
package org.gridforum.ogsi.provider;

import org.gridforum.ogsi.GridServiceException;

 7

import org.gridforum.ogsi.servicedata.ServiceDataContainer;
import javax.xml.rpc.handler.MessageContext;

public abstract class ServiceSkeleton
implements GridServicePortType, ServiceProperties {

public ServiceDataContainer getServiceDataContainer();
public void setServiceDataContainer(ServiceDataContainer container);
public void postCreate(MessageContext context) throws GridServiceException;
public void postActivate(MessageContext context) throws GridServiceException;
public void prePassivate() throws GridServiceException;
public void preDestroy() throws GridServiceException;

}

The ServiceSkeleton is the base class for all Grid services. It provides an
implementation of the GridServicePortType (Service Endpoint Interface)
generated from the OGSI WSDL Port Type. Further it provides getters and setters to plug
in customized implementations of a ServiceDataContainer. It is however
expected that the OGSI container provides a default ServiceDataContainer
implementation. All of its non-abstract subclasses must have a default constructor, in
order to allow the framework to create instances on demand. In the simplest scenario
Grid service providers can let their implementation inherit from the
ServiceSkeleton directly, but in many cases the extended service skeleton would be
a generated dispatcher delegating out to the actual service implementation and optional
implementations of the OGSI WSDL Port Types. The postCreate, postActivate, and
postPassivate methods can be used to bootstrap, and swap out state information like
service data. The creation and activation callbacks are triggered by an incoming request
message and these operation take the JAX-RPC defined MessageContext that
triggered its invocation as input.

9.2 PersistentServiceSkeleton
package org.gridforum.ogsi.provider;

import org.gridforum.ogsi.GridServiceException;
import javax.xml.rpc.handler.MessageContext;

public abstract class PersistentServiceSkeleton
extends GridServiceSkeleton {

public void postPeristentCreate(MessageContext context)
throws GridServiceException;

public void postPersitentActivate(MessageContext context)
throws GridServiceException;

public void prePersistentPassivate() throws GridServiceException;
public void prePersistentDestroy() throws GridServiceException;

}

All Grid services that are not to be created by factories should inherit from the
PersistentServiceSkeleton class, and thus indicating to the OGSI container
that it has to make these services available when requests targeting them are encountered.

9.3 Delegation Skeletons
package org.gridforum.ogsi.provider;

public class <PorType>DelegationSkeleton
implements <PortType>PortType {

}

 8

Delegation skeletons should be provided for all OGSI WSDL Port Types except the
GridServicePortType, which is implemented in the ServiceSkeleton class.
The ServiceSkeleton will delegate the requests to these skeletons, which implement
the respective Service Endpoint Interfaces for their Port Types. These Port Type
implementations can be seen as the default implementations provided by the OGSI
container. Service providers may however override these implementations.

9.4 FactoryServiceSkeleton
package org.gridforum.ogsi.provider;

import org.gridforum.ogsi.GridServiceException;

public abstract class FactoryServiceSkeleton
extends PersistentServiceSkeleton, implements FactoryPortType {

public ServiceSkeleton createServiceObject(Object input)
throws GridServiceException;

}

This class is a convenience class for implementing factories. It allows the OGSI container
to provide most of the underlying implementation of the factory on behalf of the service
provider. The only method the service provider has to implement is createServiceObject
returning a ServiceSkeleton that implements the service provider PortType(s).

9.5 ServiceActivator
package org.gridforum.ogsi.provider;
import org.gridforum.ogsi.GridServiceException;
import javax.xml.rpc.handler.MessageContext;

public interface ServiceActivator {
public ServiceSkeleton activate(MessageContext context)

throws GridServiceException;
public PersistentServiceSkeleton activatePersistent(

MessageContext context) throws GridServiceException;
}

The OGSI container will invoke the ServiceActivator if a service is registered but
not active yet (i.e. no ServiceSkeleton instance exists). A service activator is
expected to be able to recover the state of a ServiceSkeleton instance, in order to
make server lifecycles transparent to clients. The activator would commonly also work in
conjunction with a passivator that could be implemented using the JAX-RPC Handler
framework to provide a LRU cache of skeletons.

9.6 ServiceProperties
package org.gridforum.ogsi.provider;

public interface ServiceProperties {
public Object getProperty(String key);
public void setProperty(String key, Object property);

}

This interface is used to set and get properties on service instances, and thus represents
the local state of the instance. This interface is mainly intended to be used to

 9

communicate internal state between delegation skeletons, and thus promoting their
decoupling.

9.7 ContainerRegistry
package org.gridforum.ogsi.registry;

import org.gridforum.ogsi.provider.ServiceSkeleton;
import org.gridforum.ogsi.provider.ServiceActivator;
import org.gridforum.ogsi.GridServiceException;

public interface ContainerRegistry {
public void registerService(ServiceSkeleton service,

String servicePath) throws GridServiceException;
public void registerActivator(ServiceActivator activator,

String activatorPath) throws GridServiceException;
public void unregisterActivator(String activatorPath)

throws GridServiceException;
public ServiceSkeleton unregisterService(String servicePath)

throws GridServiceException;
public void passivateService(String servicePath) throws GridServiceException;
public ServiceSkeleton lookup(String servicePath)

throws GridServiceException;
public Collection getServices(String servicePath)

throws GridServiceException;
public void addListener(String servicePath,

ContainerRegistryListener listener) throws GridServiceException;
public void removeListener(String servicePath,

ContainerRegistryListener listener) throws GridServiceException;
}

The ContainerRegistry is a local registry of services currently registered in the
container. The OGSI container cannot dispatch the request if the service is not registered
in this container. A lookup of a service may result in activation if the service has been
associated with an activator. The services are ordered in a hierarchical structure
determined by the servicePath. An activator registered at a certain path will be able to
activate all services below itself in the hierarchy. Factories are expected to register the
services they created in sub trees as well, thus allowing per factory activators to be
registered.

9.8 ContainerRegistryListener
package org.gridforum.ogsi.registry;

public interface ContainerRegistryListener {
public void registryChanged(String registryPath);

}

If a registry entry changes under the given path a notification is sent out to all registered
listeners on that path.

9.9 ServiceDataContainer
package org.gridforum.ogsi.servicedata;
public interface ServiceDataContainer {

public ServiceDataElement createServiceData()throws GridServiceException;
public void addServiceData(ServiceDataElement data)

throws GridServiceException;
public Object findServiceData(Object queryExpression)

 10

throws GridServiceException;
public ServiceDataElement getServiceData(String name)

throws GridServiceException;
public ServiceDataElement removeServiceData(String name)

throws GridServiceException;
public void addListener(String name,

ServiceDataListener listener) throws GridServiceException;
public void removeListener(String name,

ServiceDataListener listener) throws GridServiceException;

}

A service data container must be associated with all Grid services. It allows Service Data
Elements (SDEs) to be created, published, and discovered. The SDEs are generated from
schemas that comply with the XML Schema definition of an SDE in the Grid Service
specification [3] according the mapping defined by JAX-RPC. The GridServiceSkeleton
will call the findServiceData method when a remote findServiceData request is received.

9.10 ServiceDataListener
package org.gridforum.ogsi.servicedata;

public interface ServiceDataListener {
public void serviceDataChanged(String serviceDataName);

}

If a service data value changes a notification is sent out to all registered listeners on that
name.

10 Use Case: Light-weight Java Grid service
Implementation

In the design shown in Figure 1, there are two implementation approaches that a service
can choose from; including direct sub-classing of the ServiceSkeleton, and
FactoryServiceSkeleton classes; and delegation. These implementation choices
will allow us to meet the requirements to support a service implementation as both a Java
Object, and an EJB (exemplified in the next section), depending on the specific QoS
required by the service. Even in a Java Object scenario, the delegation model may be
useful if, for instance, an existing application needs to be exposed as a Grid service.

The following examples implement a counter Grid service. The counter Grid service is a
very simple stateful service that supports the operations add(), subtract() and getValue().

10.1 Java Subclass Implementation of Counter Grid service

The subclass implementation of the Counter grid service includes a Java implementation
of the counter that is derived from the ServiceSkeleton and a Java implementation
of the counter factory that is derived form the FactoryServiceSkeleton.

 11

+createServiceObject()

FactoryServiceSkeleton

+createServiceObject()

CounterFactoryImpl

+preDestroy()

ServiceSkeleton

+add()
+subtract()
+getValue()

CounterImpl

+add()
+subtract()
+getValue()

«interface»
CounterPortType

«instantiate»

Figure 2: Subclass implementation of Counter Grid service

10.1.1 Tool Generated Code

The code generated in the Java subclass implementation consists of the following:

1. The JAX RPC client proxies and associated Java interfaces. In the above
example, the CounterPortType is one of these artifacts, which is also used by
the service implementation. Note, the other client side artifacts are not shown on
this model. The JAX-RPC provider tools typically generate this code.

2. The factory implementation, which in this example is represented by
CounterFactoryImpl.

3. A service implementation shell or skeleton that will need to be augmented with
the applicable business logic. CounterImpl represents this in the above
example.

10.1.2 CounterFactoryImpl.java Source Code

package org.globus.ogsa.impl.samples.counter.basic;

import org.gridforum.ogsi.provider.FactoryServiceSkeleton;
import org.gridforum.ogsi.provider.ServiceSkeleton;
import org.gridforum.ogsi.GridServiceException;

public class CounterFactoryImpl extends FactoryServiceSkeleton {
public ServiceSkeleton createServiceObject(Object input)

throws GridServiceException {
return new CounterImpl();

}
}

 12

10.1.3 CounterImpl.java Source Code

Note, the code generated by the tooling would include the signature for CounterImpl,
however would not include the business logic associated with this signature. In this
example, the Grid Service developer would be responsible for the implementation of the
add(), subtract(), and getValue() methods which will be exposed as operations on the
service.

package org.globus.ogsa.impl.samples.counter.basic;

import org.globus.ogsa.samples.CounterPortType;
import org.gridforum.ogsi.provider.ServiceSkeleton;
import java.rmi.RemoteException;

public class CounterImpl extends ServiceSkeleton
implements CounterPortType {

private int val = 0;
public int add(int val) throws RemoteException {

this.val = this.val + val; return this.val;
}
public int subtract(int val) throws RemoteException {

this.val = this.val - val; return this.val;
}
public int getValue() throws RemoteException {

return this.val;
}

}

10.2 Java Delegation Implementation of Counter Grid service

In the Java delegation implementation, a service skeleton subclasses
ServiceSkeleton and delegates the requests to the counter implementation.

10.2.1 Tool Generated Code

It is assumed that the Java delegation implementation will be the implementation
approach used by the tooling when exposing, for example, an existing Java class
implementation that cannot be modified, as a Grid service.

The code generated in the Java delegation implementation consists of the following:
• The JAX RPC client proxies and associated Java interfaces
• The factory implementation
• A service skeleton, which will contain and exploit the business logic of the Java class

via delegation. In the above example, this is represented by CounterSkeleton.

There should be no additional Java code that needs to be written by the service developer
using this approach.

 13

+createServiceObject()

FactoryServiceSkeleton

+createServiceObject()

CounterFactoryImpl

+preDestroy()

ServiceSkeleton

+add()
+subtract()
+getValue()

CounterSkeleton

+add()
+subtract()
+getValue()

CounterImpl

+add()
+subtract()
+getValue()

«interface»
CounterPortType«instantiate»

Figure 3: Delegation implementation of Counter Grid service

10.2.2 CounterFactoryImpl.java Source Code

package org.globus.ogsa.impl.samples.counter.delegation;

import org.gridforum.ogsi.provider.FactoryServiceSkeleton;
import org.gridforum.ogsi.provider.ServiceSkeleton;
import org.gridforum.ogsi.GridServiceException;

public class CounterFactoryImpl extends FactoryServiceSkeleton {
public ServiceSkeleton createServiceObject (Object impl)

throws GridServiceException {
return new CounterSkeleton(new CounterImpl());

}
}

10.2.3 CounterSkeleton.java Source Code

package org.globus.ogsa.impl.samples.counter.delegation;

import org.gridforum.ogsi.provider.ServiceSkeleton;
import org.globus.ogsa.samples.CounterPortType;
import java.rmi.RemoteException;

public class CounterSkeleton extends ServiceSkeleton
implements CounterPortType {

private CounterImpl impl;
public CounterSkeleton(CounterImpl impl) {

this.impl = impl;
}
public int add(int val) throws RemoteException {

 14

return this.impl.add(val);
}
public int subtract(int val) throws RemoteException {

return this.impl.subtract(val);
}
public int getValue() throws RemoteException {

return this.impl.getValue();
}

}

11 Use Case: Custom EJB Dispatcher

J2EE technology provides a component-based approach to the design, development,
assembly, and deployment of enterprise applications. J2EE simplifies enterprise
applications by basing them on standardized, modular components, by providing a
complete set of services to those components, and by handling many details of
application behavior automatically, without complex programming. J2EE has two
containers that isolate applications from underlying platforms. These are the EJB
container and the Web container. Grid service implementations can be rendered in either
container with varying qualities of service. The EJB container manages things like
security, transaction, concurrency, and persistence so that application developers can
focus on business behavior instead of infrastructure behavior. If this level of
infrastructure support is not required, grid services can also be implemented as Java
Objects, as exemplified in the previous section. Either way, implementing Grid services
within the J2EE component model leverages this base and all it has to offer software
developers.

Basing grid services on the J2EE model is also important because it reuses a familiar
programming model instead of introducing a new one. Developers familiar with J2EE
and EJBs can quickly get started creating Grid services.

A full explanation of the EJB model is beyond the scope of this document. The important
concepts being leveraged here are primary classes that comprise an EJB. These are the
Home interface, the Remote interface and the Enterprise bean itself. Figure 4 shows the
Counter example implemented as an EJB.

11.1 Grid Service as an EntityBean

When the Counter class is implemented as an EJB, there are actually four classes that
are needed. This is because Counter has persistent state and should be implemented as
an Entity Bean. For services without persistent state, or states that doesn’t need to be
preserved between server restarts, Session Beans could be used. The Counter class
signature becomes the remote interface and retains the original name of the class for
clients to refer to. It only has the methods defined in the public interface of the original
class because it is a stub that will delegate back to the actual enterprise bean.

 15

CounterBean is the persistent enterprise bean class, which contains the value attribute
and the implementations for the accessor methods and business methods. It contains all
the logic from the original class. It also has several methods that are required by the EJB
specification for managing the lifecycle of the bean.

All EJBs are created via a factory. The factory is called the HomeInterface and is
implemented by the CounterHome class in this example. Finally there is a PrimaryKey
class, which is used in findByPrimaryKey operations to uniquely identify the entity
EJB. This class is only generated for Entity beans. The only class that was defined by the
developer was the original Counter class. The four classes that are presented here were
generated by EJB tooling. This is the same strategy used for developing Grid services.

OGSA Grid service developers can develop their business functions just like any other
Java class or EJB. The tools that will be provided will generate code that leverages this
design and wraps the Home interface, Remote interface, and actual Enterprise bean,
respectively and add the behavior required of a Grid Service. It is important to note that if
you develop your service as a Java object and later want to change it to an EJB
implementation, you must adhere to the J2EE specification and not do anything that
would violate the EJB container contract (e.g., like spawning your own threads or
accessing resources that are not container managed without using the Java Connector
Architecture (JCA)).

«EJBCreateMethod» +create()
«EJBFinderMethod» +findByPrimaryKey()

«EJBHomeInterface»
CounterHome

+add()
+subtract()
+getValue()

«EJBRemoteInterface»
Counter

«EJBPrimaryKey»
CounterBeanPK

«EJBCreateMethod» +ejbCreate()
«EJBCreateMethod» +ejbPostCreate()
+ejbActivate()
+ejbPassivate()
+ejbLoad()
+ejbStore()
+ejbRemove()
+setEntityContext()
+unsetEntityContext()
+add()
+subtract()
+getValue()

#context : EnityContext
-val : int

«EJBEntity»
CounterBean

Figure 4: EJB Counter Components

The technique used to support a Grid service EJB implementation is very similar to the
Java delegation implementation model described in section 10.2. In this case, the service

 16

skeleton (CounterSkeleton) in our example is what integrates the EJB into the OGSI
container framework.

11.1.1 Tool Generated Code

The tooling support for EJBs provides the ability to expose an existing EJB as a Grid
service.

The code generated in the EJB implementation of a Grid service consist of the following:

• The JAX RPC client proxies and associated Java interfaces.
• The factory implementation, which in this example is represented as

CounterFactoryEjbImpl.
• A service EJB skeleton, which will contain a remote reference to the service EJB

that is represented as CounterEjbSkeleton in this example.

Exposing an existing EJB will have the same characteristics, as the use of an existing
Java class in that no additional code will need to be developed by the service
implementer.

11.1.2 CounterFactoryEjbImpl.java Source Code

package com.ibm.ogsa.impl.demo.counter.ejb;

import org.gridforum.ogsi.provider.FactoryServiceSkeleton;
import org.gridforum.ogsi.provider.ServiceSkeleton;
import org.gridforum.ogsi.GridServiceException;

import com.ibm.ogsa.sample.CounterHome;
import com.ibm.ogsa.sample.Counter;

import javax.naming.InitialContext;
import javax.naming.Context;
import javax.naming.NamingException;
import javax.ejb.CreateException;
import java.rmi.RemoteException;
import java.util.Properties;
import javax.rmi.PortableRemoteObject;

public class CounterFactoryEjbImpl extends FactoryServiceSkeleton {
public ServiceSkeleton createServiceObject (Object input)

throws GridServiceException {
CounterEjbSkeleton aCounterSkeleton = null;
try {

Context jndiContext = new InitialContext();
Object ref =

jndiContext.lookup("ejb/com/ibm/ogsa/sample/CounterHome");
CounterHome home =

(CounterHome)PortableRemoteObject.narrow(ref,
CounterHome.class);

Counter anEJBCounter = home.create();

 17

aCounterSkeleton = new CounterEjbSkeleton(anEJBCounter);
} catch (Exception e) {

throw new GridServiceException(e);
}
return aCounterSkeleton;

}
}

+createServiceObject()

FactoryServiceSkeleton

+preDestroy()

ServiceSkeleton

+add()
+subtract()
+getValue()

«interface»
CounterPortType

+createServiceObject()

CounterFactoryEjbImpl

«EJBCreateMethod» +create()
«EJBFinderMethod» +findByPrimaryKey()

«EJBHomeInterface»
CounterHome

«EJBCreateMethod» +ejbCreate()
«EJBCreateMethod» +ejbPostCreate()
+ejbActivate()
+ejbPassivate()
+ejbLoad()
+ejbStore()
+ejbRemove()
+setEntityContext()
+unsetEntityContext()
+add()
+subtract()
+getValue()

#context : EnityContext
-val : int

«EJBEntity»
CounterBean

+add()
+subtract()
+getValue()
+preDestroy()

-impl
CounterEjbSkeleton

+add()
+subtract()
+getValue()

«EJBRemoteInterface»
Counter

«instantiate»

«instantiate»

«instantiate»

Figure 5: EJB implementation of Counter Grid service

CounterFactoryEjbImpl is the factory implementation of the EJB counter Grid
service. This factory encapsulates the details associated with locating the EJB home

 18

interface, creating the counter bean, and passing the reference to the EJB remote interface
to the service skeleton. The createSeviceObject operation creates the service
skeleton in addition to the actual counter EJB and returns the CounterEjbSkeleton
with the remote EJB reference.

11.1.3 CounterEjbSkeleton.java Source Code

package com.ibm.ogsa.impl.demo.counter.ejb;

import org.gridforum.ogsi.provider.ServiceSkeleton;
import org.gridforum.ogsi.GridServiceException;
import org.globus.ogsa.samples.CounterPortType;
import com.ibm.ogsa.sample.Counter;

import javax.xml.rpc.handler.MessageContext;
import javax.ejb.RemoveException;
import java.rmi.RemoteException;

public class CounterEjbSkeleton extends ServiceSkeleton
implements CounterPortType {

private Counter impl;
public CounterEjbSkeleton(Counter impl) {

this.impl = impl;
}
public int add(int val) throws RemoteException {

return this.impl.add(val);
}
public int subtract(int val) throws RemoteException {

return this.impl.subtract(val);
}
public int getValue() throws RemoteException {

return this.impl.getValue();
}
public void preDestroy() throws GridServiceException {

try {
impl.remove();

} catch (RemoveException re) {
throw new GridServiceException(re);

}
}

}

CounterEjbSkeleton contains the remote interface to the Counter Session EJB
(impl) and is responsible for delegating operations to business methods implemented by
the EJB.The preDestroy operation is the callback method that is used to notify this
service skeleton that the service will be destroyed. In this case, the Counter EJB is
removed. Note that the framework will call preDestroy when clients explicitly
destroy the Grid service, as well as when the soft-state timeout of the Grid service
expires.

 19

12 References

1. Globus Open Grid Services Architecture Development Framwork (OGSADF).

www.globus.org/ogsa/TechPreview
2. Foster, I., Kesselman, C., Nick, J. and Tuecke, S. The Physiology of the Grid: An

Open Grid Services Architecture for Distributed Systems Integration. Globus
Project, 2002, www.globus.org/research/papers/ogsa.pdf

3. Tuecke, S., Czajkowski, K., Foster, I., Frey, J., Graham, S. and Kesselman, S.
Grid Service Specification. Globus Project; Draft 2, 6/13/2002.
www.gridforum.org/ogsi-wg/drafts/GS_Spec_draft02_2002-06-13.pdf

4. Unicore OGSA Demonstrator. Unicore, 2002. www.unicore.org/downloads.htm
5. Web Services Description Language (WSDL) 1.1: www.w3.org/TR/wsdl
6. W3C: SOAP 1.2: www.w3.org/TR/2001/WD-soap12-20010709/
7. Sun Microsystems. Java API for XML-based RPC. JAX-RPC 1.0, JSR 101.

java.sun.com/xml/jaxrpc/
8. Sun Microsystems. Java Servlet 2.3 Specification. JSR 53.

www.jcp.org/aboutJava/communityprocess/final/jsr053/
9. W3C Recommendation. XML Schema Part 2: Datatypes.

www.w3.org/TR/xmlschema-2/
10. IBM. Web Services for J2EE, Version 1. JSR 109.

www.jcp.org/aboutJava/communityprocess/review/jsr109/
11. Sun Microsystems. Enterprise Java Beans Specification, Version 2. JSR 19

www.jcp.org/aboutJava/communityprocess/final/jsr019/
12. Sun Microsystems. Java APIs for XML Messaging, Version 1.1

www.jcp.org/aboutJava/communityprocess/final/jsr067/index2.html
13. Sun Microsystems. Java 2 Enterprise Edition (J2EE). java.sun.com/j2ee/
14. OMG. Common Object Request Broker: Architecture and Specification, Revision

2.2. Object Management Group Document 96.03.04, 1998.
15. Sun Microsystems. Java 2 Standard Edition. (J2SE). java.sun.com/j2se/
16. Sun Microsystems. Java 2 Micro Edition (J2ME). java.sun.com/j2me/

http://www.globus.org/ogsa/TechPreview
http://www.globus.org/research/papers/ogsa.pdf
http://www.gridforum.org/ogsi-wg/drafts/GS_Spec_draft02_2002-06-13.pdf
http://www.unicore.org/downloads.htm
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/2001/WD-soap12-20010709/
http://java.sun.com/xml/jaxrpc/
http://www.jcp.org/aboutJava/communityprocess/final/jsr053/
http://www.w3.org/TR/xmlschema-2/
http://www.jcp.org/aboutJava/communityprocess/review/jsr109/
http://www.jcp.org/aboutJava/communityprocess/final/jsr019/
http://www.jcp.org/aboutJava/communityprocess/final/jsr067/index2.html
http://java.sun.com/j2ee/
http://java.sun.com/j2se/
http://java.sun.com/j2me/

 20

Appendix A: Open Issues
Service Data Container Hosting in EJB sandholm 07/13/2002
Service Data XML Collection Representation sandholm 07/13/2002
Service Data Container Hosting in EJB sandholm 07/13/2002
Example showcasing activtion/passivation and EJB
primary key mapping

sandholm 07/13/2002

PersistentProperties integration sandholm 07/13/2002
Delegation Skeleton Portability and
ServiceProperties propagation

sandholm 07/13/2002

Representation of Passivated Services in Container
Registry

sandholm 07/13/2002

How to get a reference to a ContainerRegistry sandholm 07/14/2002
Transient Factory Support sandholm 07/14/2002
Define GridServiceException hierachy sandholm 07/15/2002

	Introduction
	Related Specifications
	Scope
	Goal
	Grid Service Port Types as Java Interfaces
	Implementing Port Type Interfaces
	Registering Service Instances
	External Sate Management
	OGSI Container Interfaces and Classes
	ServiceSkeleton
	PersistentServiceSkeleton
	Delegation Skeletons
	FactoryServiceSkeleton
	ServiceActivator
	ServiceProperties
	ContainerRegistry
	ContainerRegistryListener
	ServiceDataContainer
	ServiceDataListener

	Use Case: Light-weight Java Grid service Implementation
	Java Subclass Implementation of Counter Grid service
	Tool Generated Code
	CounterFactoryImpl.java Source Code
	CounterImpl.java Source Code

	Java Delegation Implementation of Counter Grid service
	Tool Generated Code
	CounterFactoryImpl.java Source Code
	CounterSkeleton.java Source Code

	Use Case: Custom EJB Dispatcher
	Grid Service as an EntityBean
	Tool Generated Code
	CounterFactoryEjbImpl.java Source Code
	CounterEjbSkeleton.java Source Code

	References
	Appendix A: Open Issues

